
A Hierarchical Internet Object Cache

Anawat Chankhunthod
Peter B. Danzig

Chuck Neerdaels
Computer Science Department

University of Southern California

Michael F. Schwartz
Kurt J. Worrell

Computer Science Department
University of Colorado - Boulder

Abstract: This paper discusses the design and performance
of a hierarchical proxy-cache designed to make Internet in-
formation systems scale better. The design was motivated by
our earlier trace-driven simulation study of Internet traffic.
We believe that the conventional wisdom, that the benefits
of hierarchical file caching do not merit the costs, warrants
reconsideration in the Internet environment.

The cache implementation supports a highly concurrent
stream of requests. We present performance measurements
that show that the cache outperforms other popular Inter-
net cache implementations by an order of magnitude under
concurrent load. These measurements indicate that hierar-
chy does not measurably increase access latency. Our soft-
ware can also be configured as a Web-server accelerator; we
present data that our httpd-acceleratoris ten times faster than
Netscape’s Netsite and NCSA 1.4 servers.

Finally, we relate our experience fitting the cache into the
increasingly complex and operational world of Internet in-
formation systems, including issues related to security, trans-
parency to cache-unawareclients, and the role of file systems
in support of ubiquitous wide-area information systems.

1 Introduction

Perhaps for expedience or because software developers per-
ceive network bandwidth and connectivity as free commodi-
ties, Internet information services like FTP, Gopher, and
WWW were designed without caching support in their core
protocols. The consequence of this misperception now haunts
popular WWW and FTP servers. For example, NCSA, the
home of Mosaic, moved to a multi-node cluster of servers to
meet demand. NASA’s Jet Propulsion Laboratory wide-area
network links were saturated by the demand for Shoemaker-
Levy 9 comet images in July 1994, and Starwave corporation
runs a five-node SPARC-center 1000 just to keep up with de-
mand for college basketball scores. Beyond distributing load
away from server “hot spots”, caching can also save band-
width, reduce latency, and protect the network from clients
that erroneously loop and generate repeated requests [9].

This paper describes the design and performance of the
Harvest [5] cache, which we designed to make Internet in-
formation services scale better. The cache implementation is

optimized to support a highly concurrent stream of requests
with minimal queuing for OS-level resources, using non-
blocking I/O, application-level threading and virtual memory
management, and a Domain Naming System (DNS) cache.
Because of its high performance, the Harvest cache can also
be paired with existing HTTP servers (httpd’s) to increase
document server throughput by an order of magnitude.

Individual caches can be interconnected hierarchically to
mirror an internetwork’s topology, implementing the design
motivated by our earlier NSFNET trace-driven simulation
study [10].

1.1 Hierarchical Web versus File System Caches

Our 1993 study of Internet traffic showed that hierarchical
caching of FTP files could eliminate half of all file transfers
over the Internet’s wide-area network links. [10]. In contrast,
the hierarchical caching studies of Blaze and Alonso [2] and
Muntz and Honeyman [18] showed that hierarchical caches
can, at best, achieve 20% hit rates and cut file server workload
in half. We believe the different conclusions reached by our
study and these two file system studies lay in the workloads
traced.

Our study traced wide-area FTP traffic from a switch near
the NSFNET backbone. In contrast, Blaze and Alonso [2]
and Muntz and Honeyman [18] traced LAN workstation file
system traffic. While workstation file systems share a large,
relatively static collection of files, such as gcc, the Internet
exhibits a high degree of read-only sharing among a rapidly
evolving set of popular objects. Because LAN utility files
rarely change over a five day period, both [18] and [2] studies
found little value of hierarchical caching over flat file caches
at each workstation: After the first reference to a shared
file, the file stayed in the local cache indefinitely and the
upper-level caches saw low hit rates.

In contrast to workstation file systems, FTP, WWW, and
Gopher facilitate read-only sharing of autonomously owned
and rapidly evolving object spaces. Hence, we found that
over half of NSFNET FTP traffic is due to sharing of read-
only objects [10] and, since Internet topology tends to be
organized hierarchically, that hierarchical caching can yield
a 50% hit rate and reduce server load dramatically. Claffy
and Braun reported similar statistics for WWW traffic [7],
which has displaced FTP traffic as the largest contributor to
Internet traffic 1.

Second, the cost of a cache miss is much lower for In-
ternet information systems than it is for traditional caching

1The Alex File System [8], like our Harvest cache, caches FTP files, but
Alex is not a hierarchical cache. We compare Alex to Harvest in Section 6.

applications. Since a page fault can take 10 5 times longer to
service than hitting RAM, the RAM hit rate must be 99.99%
to keep the average access speed at twice the cost of a RAM
hit. In contrast, the typical miss-to-hit cost ratio for Internet
information systems is 10:1 2, and hence a 50% hit ratio will
suffice to keep the average cost at twice the hit cost.

Finally, Internet object caching addresses more than la-
tency reduction. As noted above and in the file system papers,
hierarchical caching moves load from server hot spots. Not
mentioned in the file system papers, many commercial sites
proxy all access to the Web and FTP space through proxy
caches, out of concern for Internet security. Many Internet
sites are forced to use hierarchical object caches.

The Harvest cache has been in use for 1.5 years by a
growing collection of about 100 sites across the Internet, as
both a proxy-cache and as an httpd-accelerator. Our expe-
riences during this time highlight several important issues.
First, cache policy choices are made more difficult because
of the prevalence of information systems that provide neither
a standard means of setting object Time-To-Live (TTL) val-
ues, nor a standard for specifying objects as non-cacheable.
For example, it is popular to create WWW pages that modify
their content each time they are retrieved, by returning the
date or access count. Such objects should not be cached.
Second, because it is used in a wide-area network environ-
ment (in which link capacity and congestion vary greatly),
cache topology is important. Third, because the cache is
used in an administratively decentralized environment, se-
curity and privacy are important. Fourth, the widespread use
of location-dependent names (in the form of Uniform Re-
source Locators, or URLs) makes it difficult to distinguish
duplicated or aliased objects. Finally, the large number of
implementations of both clients and servers leads to errors
that worsen cache behavior.

We discuss these issues in more depth below.

2 Design

This section describes our design to make the Harvest cache
fast, efficient, portable, and transparent.

2.1 Cache Hierarchy

To reduce wide-area network bandwidth demand and to re-
duce the load on Internet information servers, caches resolve
misses through other caches higher in a hierarchy, as illus-
trated in Figure 1. In addition to the parent-child relation-
ships illustrated in this figure, the cache supports a notion of
siblings. These are caches at the same level in the hierarchy,
provided to distribute cache server load.

Each cache in the hierarchy independently decides whether
to fetch the reference from the object’s home site or from its
parent or sibling caches, using a simple resolution protocol
that works as follows.

If the URL contains any of a configurable list of sub-
strings, then the object is fetched directly from the object’s
home, rather than through the cache hierarchy. This feature
is used to force the cache to resolve non-cacheable (“cgi-
bin”) URLs and local URLs directly from the object’s home.
Similarly, if the URL’s domain name matches a configurable
list of substrings, then the object is resolved through the
particular parent bound to that domain.

2This rough estimate is based on the observation that it takes about one
second for a browser like Netscape to load an object from disk and render it
for display, while a remote object takes about 10 seconds to be retrieved and
displayed.

Regional Network

Stub
Network

Stub
Network

Regional Network

Stub
Network

Stub
Network

Stub
Network

Regional Network

Stub
Network

Stub
Network

Stub
Network

Backbone

Network

Object Cache

Figure 1: Hierarchical Cache Arrangement.

Otherwise, when a cache receives a request for a URL
that misses, it performs a remote procedure call to all of its
siblings and parents, checking if the URL hits any sibling or
parent. The cache retrieves the object from the site with the
lowest measured latency.

Additionally, a cache option can be enabled that tricks the
referenced URL’s home site into implementing the resolution
protocol. When this option is enabled, the cache sendsa “hit”
message to the UDP echo port of the object’s home machine.
When the object’s home echos this message, it looks to the
cache like a hit, as would be generated by a remote cache
that had the object. This option allows the cache to retrieve
the object from the home site if it happens to be closer than
any of the sibling or parent caches.

A cache resolves a reference through the first sibling,
parent, or home site to return a UDP “Hit” packet or through
the first parent to return a UDP “Miss” message if all caches
miss and the home’s UDP “Hit” packet fails to arrive within
two seconds. However, the cache will not wait for a home
machine to time out; it will begin transmitting as soon as all of
the parent and sibling caches have responded. The resolution
protocol’s goal is for a cache to resolve an object through the
source (cache or home) that can provide it most efficiently.
This protocol is really a heuristic, as fast response to a ping
indicates low latency, yet bandwidth is more important for
large objects.

As will be shown in Section 3.5, hierarchies as deep as
three caches add little noticeable access latency. The only
case where the cache adds noticeable latency is when one
of its parents fail, but the child cache has not yet detected
it. In this case, references to this object are delayed by two
seconds, the parent-to-child cache timeout. As the hierarchy
deepens, the root caches become responsible for more and
more clients. To keep root caches servers from becoming
overloaded, we recommend that the hierarchy terminate at
the first place in the regional or backbone network where
bandwidth is plentiful.

2.2 Cache Access Protocols

The cache supports three access protocols: encapsulating,
connectionless, and proxy-http. The encapsulatingproto-
col encapsulates cache-to-cache data exchanges to permit
end-to-end error detection via checksums and, eventually,
digital signatures. This protocol also enables a parent cache
to transmit an object’s remaining time-to-live to the child
cache. The cache uses the UDP-based connectionlessproto-
col to implement the parent-child resolution protocol. This
protocol also permits caches to exchange small objects with-
out establishing a TCP connection, for efficiency. While
the encapsulatingand connectionlessprotocols both support
end-to-end reliability, the proxy-httpprotocol is the proto-
col supported by most Web browsers. In that arrangement,
clients request objects via one of the standard information
access protocols (FTP, Gopher, or HTTP) from a cache pro-
cess. The term “proxy” arose because the mechanism was
primarily designedto allow clients to interact with the WWW
from behind a firewall gateway.

2.3 Cacheable Objects

The wide variety of Internet information systems leads to a
number of cases where objects should not be cached. In the
absence of a standard for specifying TTLs in objects them-
selves, the Harvest cache chooses not to cache a number of
types of objects. For example, objects that are password pro-
tected are not cached. Rather, the cacheacts as an application
gateway and discards the retrieved object as soon as it has
been delivered. The cache similarly discards URL’s whose
name implies the object is not cacheable (See the Harvest
User’s Manual [13] for details about cacheable objects.). It
is possible to limit the size of the largest cacheable object,
so that a few large FTP objects do not purge ten thousand
smaller objects from the cache.

2.4 Unique Object Naming

A URL does not name an object uniquely; the URL plus
the MIME 3 header issued with the request uniquely identify
an object. For example, a WWW server may return a text
version of a postscript object if the client’s browser is not
able to view postscript. We believe that this capability is not
used widely, and currently the cache does not insist that the
request MIME headers match when a request hits the cache.

2.5 Negative Caching

To reduce the costs of repeated failures (e.g., from erro-
neously looping clients), we implemented two forms of neg-
ative caching. First, when a DNS lookup failure occurs,
we cache the negative result for five minutes (chosen be-
cause transient Internet conditions are typically resolved this
quickly). Second, when an object retrieval failure occurs, we
cache the negative result for a parameterized period of time,
with a default of five minutes.

2.6 Cache-Awareness

When we started designing the cache, we anticipated cache-
awareclients that would decide between resolving an object
indirectly through a parent cache or directly from the object’s
home. Towards this end, we created a version of Mosaic that
could resolve objects through multiple caches, as illustrated
in Figure 2. Within a few months, we reconsidered and

3MIME stands for “Multipurpose Internet Mail Extensions”. It was orig-
inally developed for multimedia mail systems [4], but was later adopted by
HTTP for passing typing and other meta data between clients and servers.

Client Server

Cache Cache Cache

Figure 2: Cache-aware client

CacheCache Cache

ServerClient

Figure 3: Proxy-caching client

dropped this idea as the number of new Web clients blos-
somed (cello, lynx, netscape, tkwww, etc.).

While no Web client is completely cache-aware, most
support access through IP firewalls, as illustrated in Figure 3.
Clients send all their requests to their proxy-server, and the
proxy-server decides how best to resolve it.

There are advantages and disadvantages of each approach
to cache-awareness. Cache-unaware clients are simpler to
configure; just set the proxy bindings that users already
understand and which are needed to provide Web service
through firewalls. On the other hand, cache-aware clients
permit would permit load balancing, avoid the single point
of failure caused by proxy caching, and (as noted in Sec-
tion 2.2) allow a wider range of security and end-to-end
error checking.

2.7 Security, Privacy, and Proxy-Caching

What is the effect of proxy-caching on Web security and pri-
vacy? WWW browsers support various authorization mech-
anisms, all encoded in MIME headers exchanged between
browser and server. The basic authorization mechanism
involves clear-text exchange of passwords. For protection
from eavesdropping, the Public Keyauthorization mecha-
nism is available. Here, the server announces its own public
key in clear-text, but the rest of the exchange is encrypted
for privacy. This mechanism is vulnerable to IP-spoofing,
where a phony server can masquerade as the desired server,
but the mechanism is otherwise invulnerable to eavesdrop-
pers. Thirdly, for those who want both privacy and authen-
tication, a PGPbased mechanism is available, where public
key exchange is done externally.

A basicauthentication exchange follows the following
dialog:

1. Client: GET <URL>

2. Server: HTTP:1.0 401 Unauthorized --
Authentication failed

3. Client: GET <URL> Authorization:
<7-bit-encoded name:password>

4. Server: <returns a, b, c or d>
a. Reply
b. Unauthorized 401
c. Forbidden 403
e. Not Found 404

Given the above introduction to HTTP security mecha-
nisms, we now explain how the cache transparently passes
this protocol between browser and server.

When a server passes a 401 Unauthorized message
to a cache, the cache forwards it back to the client and purges
the URL from the cache. The client browser, using the de-
sired security model, prompts for a username and password,
and reissues the GET URL with the authentication and au-
thorization encoded in the request MIME header. The cache
detects the authorization-related MIME header, treats it as
any other kind of non-cacheable object, returns the retrieved
document to the client, but otherwise purges all records of
the object. Note that under the clear-text basicauthorization
model, anyone, including the cache, could snoop the autho-
rization data. Hence, the cache does not weaken this already
weak model. Under the Public Keyor PGPbased models,
neither the cache nor other eavesdroppers can interpret the
authentication data.

Proxy-caching defeats IP address-based authentication,
since the requests appear to come from the cache’sIP address
rather than the client’s. However, since IP addresses can be
spoofed, we consider this liability an asset of sorts. Proxy-
caching does not prevent servers from encrypting or applying
digital signature to their documents.

As a final issue, unless Web objects are digitally signed,
an unscrupulous system administrator could insert invalid
data into his proxy-cache. You have to trust the people
who run your caches, just as you must trust the people who
run your DNS servers, packet switches, and route servers.
Hence, proxy-caching does not seriously weaken Web pri-
vacy.

2.8 Threading

For efficiency and portability across UNIX-like platforms,
the cache implements its own non-blocking disk and network
I/O abstractions directly atop a BSD selectloop. The cache
avoids forking except for misses to FTP URLs; we retrieve
FTP URLs via an external process because the complexity
of the protocol makes it difficult to fit into our select loop
state machine. The cache implements its own DNS cache
and, when the DNS cache misses, performs non-blocking
DNS lookups (although without currently respecting DNS
TTLs). As referenced bytes pour into the cache, these bytes
are simultaneously forwarded to all sites that referenced the
same object and are written to disk, using non-blocking I/O.
The only way the cache will stall is if it takes a virtual memory
page fault—and the cache avoids page faults by managing the
size of its VM image (see Section 2.9). The cache employs
non-preemptive, run-to-completion scheduling internally, so
it has no need for file or data structure locking. However, to
its clients, it appears multi-threaded.

2.9 Memory Management

The cache keeps all meta-data for cached objects (URL,
TTL, reference counts, disk file reference, and various flags)
in virtual memory. This consumes 48 bytes + strlen(URL)
per object on machines with 32-bit words 4. The cache will

4We plan to replace the variable length URL with a fixed length MD5,
reducing this number to 44+16=60 bytes/object.

also keep exceptionally hot objects loaded in virtual memory,
if this option is enabled. However, when the quantity of VM
dedicated to hot object storage exceeds a parameterized high
water mark, the cache discards hot objects by LRU until
VM usage hits the low water mark. Note that these objects
still reside on disk; just their VM image is reclaimed. The
hot-object VM cache is particularly useful when the cache is
deployed as an httpd-accelerator(discussed in Section 3.1).

The cache is write-through rather than write-back. Even
objects in the hot-object VM cache appear on disk. We
considered memory-mapping the files that represent objects,
but could not apply this technique because it would lead
to page-faults. Instead, objects are brought into cache via
non-blocking I/O, despite the extra copies.

Objects in the cache are referenced via a hash table keyed
by URL. Cacheable objects remain cached until their cache-
assigned TTL expires and they are evicted by the cache re-
placement policy, or the user manually evicts them by click-
ing the browser’s “reload” button (the mechanism for which
is discussed in Section 5.1). If a reference touches an ex-
pired Web object, the cache refreshes the object’s TTL with
an HTTP “get-if-modified”.

The cache keeps the URL and per-object data structures
in virtual memory but stores the object itself on disk. We
made this decision on the grounds that memory should buy
performance in a server-bottlenecked system: the meta-data
for 1,000,000 objects will consume 60-80MB of real mem-
ory. If a site cannot afford the memory, then it should use a
cache optimized for memory space rather than performance.

2.10 Disk Management

When disk space exceeds the high water mark, the cache
enters its garbage collection mode. In this mode, every few
dozen cache references, the cache discards the oldest objects
encountered in a row of its object hash table. When disk
usage drops below the low water mark, the cache exits from
its garbage collection mode. If disk usage ever reaches the
configured maxmimum, it immediately discards the oldest
objects from the next row of the hash table.

The cache manages multiple disks and attempts to bal-
ance load across them. It creates 100 numbered directories
on each disk and rotates object creation among the vari-
ous disks and directories. Hence, an average directory of a
cache that manages four disks and a million objects, stores
2500 numbered files. Since directory entries average about
24 bytes, an average directory may grow to 15, 4KB disk
blocks. The number of files per directory can be increased
to decrease directory size and reduce file system overhead.

3 Performance

We now compare the performance of the Harvest cache
against the CERN proxy-http cache [16] and evaluate our
httpd-accelerator’sperformance gain over the Netscape Net-
site, NCSA 1.4, and CERN 3.0 Web servers. We also attempt
to attribute the performance improvement to our various de-
sign decisions, as laid out in Section 2, and to evaluate the
latency degradation of faulting objects through hierarchical
caches. The measurements presented in this section were
taken on SPARC 20 model 61 and SPARC 10 model 30
workstations. We will see that Harvest’s high performance
mostly due to our disk directory structure, our choice to place
meta-data in VM, and our threaded design.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900 1000

C
um

m
ul

at
iv

e
D

is
tr

ib
ut

io
n

Time [msec]

 Harvest Cache
 CERN Cache

Measure Harvest CERN
Median 20 ms 280 ms
Average 27 ms 840 ms

Figure 4: Cumulative distribution of cache response times
for hits, ten concurrent clients. The vertical-axis plots the
fraction of events that take less than the time recorded on
the horizontal-axis. For example, 60% of the time a CERN
cache returns a hit in under 500 ms while 95% of the time
a Harvest cache returns an object that hits in under 100 ms.
CERN’s long response time tail makes its average response
time significantly larger than its median response time.

3.1 Harvest vs. CERN Cache

To make our evaluation less dependent on a particular hit
rate, we evaluate cache performance separately on hits and on
misses for a given list of URLs. Sites that know their hit rate
can use these measurements to evaluate the gain themselves.
Alternatively, the reader can compute expected savings based
on hit rates provided by earlier wide-area network traffic
measurement studies [10, 7].

Figures 4 and 5 show the cumulative distribution of re-
sponse times for hits and misses respectively. Figure 4 also
reports both the median and average response times. Note
that CERN’s response time tail extends out to several sec-
onds, so its average is three times its median. In the dis-
cussion below, we give CERN the benefit of the doubt and
discuss median rather than average response times.

To compute Figure 5, ten clients concurrently referenced
200 unique objects of various sizes, types, and Internet lo-
cations against an initially empty cache. A total of 2,000
objects were faulted into the cache this way. Once the cache
was warm, all ten clients concurrently referenced all 2,000
objects, in random order, to compute Figure 4. No cache
hierarchy was used.

These figures show that the Harvest cache is an order of
magnitude faster than the CERN cache on hits and on average
about twice as fast on misses. We discuss the reasons for
this performance difference in Section 3.4. We chose ten
concurrent clients to represent a heavily accessed Internet
server. For example, the JPL server holding the Shoemaker-
Levy 9 comet images received a peak of approximately 4
requests per second, and the objects retrieved ranged from
50-150 kbytes.

For misses there is less difference between the Harvest
and CERN caches because response time is dominated by

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

C
um

m
ul

at
iv

e
D

is
tr

ib
ut

io
n

Time [msec]

Harvest Cache
CERN Cache

Figure 5: Cumulative distribution of cache response times
for misses, ten concurrent clients, 2,000 URLs.

remote retrieval costs. However, note the bump at the upper
right corner of Figure 5. This bump comes about because
approximately 3% of the objects we attempted to retrieve
timed out (causing a response time of 75 seconds)—either
due to unreachable remote DNS servers or unreachable re-
mote object servers. While both the Harvest and the CERN
caches will experience this long timeout the first time an ob-
ject retrieval is requested, the Harvest cache’s negative DNS
and object caching mechanisms will avoid repeated timeouts
issued within 5 minutes of the failed request. This can be
important for caches high up in a hierarchy because long
timeouts will tie up file descriptors and other limited system
resources needed to serve the many concurrent clients.

3.2 Httpd-Accelerator

This order of magnitude performance improvement on hits
suggests that the Harvest cache can serve as an httpd accel-
erator. In this configuration the cache pretends to be a site’s
primary httpd server (on port 80), forwarding references that
misses to the site’s real httpd (on port 81). Further, the Web
administrator renames all non-cacheable URLs to the httpd’s
port (81). References to cacheable objects, such as HTML
pages and GIFs are served by the Harvest cache and refer-
ences to non-cacheable objects, such as queries and cgi-bin
programs, are served by the true httpd on port 81. If a site’s
workload is biased towards cacheable objects, this configu-
ration can dramatically reduce the site’s Web workload.

This approach makes sense for several reasons. First,
by running the httpd-accelerator in front of the httpd, once
an object is in the accelerator’s cache all future hits will
go to that cache, and misses will go to the native httpd.
Second, while the httpd servers process forms and queries,
the accelerator makes the simpler, common case fast [15].
Finally, while it may not be practical or feasible to change
the myriad httpd implementations to use the more efficient
techniques advocated in this paper, sites can easily deploy
the accelerator along with their existing httpd.

While the benefit of running an httpd-accelerator depends
on a site’s specific workload of cacheable and non-cacheable
objects, note that the httpd-accelerator cannot degrade a site’s
performance. Further note that objects that don’t appear
cacheable at first glance, can be cached at some slight loss
of transparency. For example, given a demanding workload,
accellerating access to “non-cacheable” objects like sport

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000

C
um

m
ul

at
iv

e
D

is
tr

ib
ut

io
n

Time [msec]

HTTPD Accelerator

Httpd Accel HIT
Httpd Accel MISS TMPFS

NCSA HTTPD
Netsite HTTPD

Figure 6: Response time of an httpd-accelerator versus a
native httpd for a workload of all hits.

scores and stock quotes is possible if users can tolerate a
short refresh delay, such as thirty seconds.

3.3 Httpd-Accelerator vs. Netsite & NCSA 1.4

Figure 6 demonstrates the performance of a Harvest cache
configured as an httpd-accelerator. In this experiment, we
faulted several thousand objects into a Harvest cache and
then measured the response time of the Harvest cache versus
the NCSA and Netsite httpd. Notice how Harvest serves
documents that hit the httpd-accelerator with a median of
20 milliseconds, while the medians of Netscape’s Netsite
and NCSA’s 1.4 httpd are each about 300 ms. On objects
that miss, Harvest adds only about 20 ms to NCSA’s and
Netscape’s 300 ms median access times.

Note that on restart, the httpd-accelerator simply refaults
objects from the companion Web server. For this reason,
for added performance, the accellerator’s disk store can be a
TMPFS file system.

The httpd-accelerator can serve 200, small objects per
second. We measured this by having 10 clients concurrently
fetching two hundred different URL’s, in random order, from
a warm cache. Note that this is faster than implied by the
average response time; we explain this below.

3.4 Decomposing Cache Performance

We now decompose how the Harvest cache’s various design
elements contribute to its performance. Our goal is to explain
the roughly 260 ms difference in median and roughly 800
ms difference in average response times for the “all hits”
experiment summarized in Figure 4.

The factor of three difference between CERN’s median
and average response time, apparent in CERN’s long re-
sponse time tail, occurs because under concurrent access, the
CERN cache is operating right at the knee of its performance
curve. Much of the response time above the median value
corresponds to queueing delay for OS resources (e.g., disk
accesses and CPU cycles). Hence, below, we explain the
260 ms difference between CERN’s and Harvest’s median
response times (see Table 1).

Establishing and later tearing down the TCP connec-
tion between client and cache contributes a large part of the
Harvest cache response time. Recall that TCP’s three-way
handshakes add a round trip transmission time to the begin-
ning of a connection and a round trip time to the end. Since

Factor Savings [msec.]
RAM Meta Data 112
Hot Object RAM Cache 112
Threading 36
DNS Lookup Cache 3
Total 264

Table 1: Back of the envelope breakdown of Performance
Improvements

the Harvest cache can serve 200 small objects per second (5
ms per object) but the median response time as measured by
cache clients is 20 ms, this means that 15 ms of the round-trip
time is attributable to TCP connection management. This 15
ms is shared by both CERN and the Harvest cache.

We measured the savings of implementing our own thread-
ing by measuring the cost to fork() a UNIX process that
opens a single file (/bin/ls .). We measured the
savings from caching DNS lookups as the time to perform
gethostbyname() DNS lookups of names pre-faulted
into a DNS server on the local network. We computed the
savings of keeping object meta-data in VM by counting the
file system accesses of the CERN cache for retrieving meta-
data from the UNIX file system. We computed the savings
from caching hot objects in VM by measuring the file system
accesses of the CERN cache to retrieve hot objects,excluding
hits from the OS buffer pool.

We first measured the number of file-system operations
by driving cold-caches with a workload of 2,000 different
objects. We then measured the number of file-system op-
erations needed to retrieve these same 2,000 objects from
the warm caches. The first, all-miss, workload measures the
costs of writing objects through to disk; the all-hit work-
load measures the costs of accessing meta-data and objects.
Because SunOS instruments NFS better than it instruments
directly-connected file systems, we ran this experiment on an
NFS-mounted file system. We found that the CERN cache
averages 15 more file system operations per object for meta-
data manipulations and 15 more file system operations per
object for reading object data. Of course, we cannot convert
operation counts to elapsed times because they depend on
the size, state and write-back policy of the OS buffer pool
and in-core inode table. (In particular, one can reduce actual
disk I/O’s by dedicating extra memory to file system buffer-
ing.) As a grotesquely coarse estimate, Table 1 assumes that
disk operations average 15 ms and that half of the file system
operations result in disk operations or 7.5 ms average cost
per file system operation.

3.5 Cache Hierarchy vs. Latency

The benefits of hierarchical caching (namely, reduced net-
work bandwidth consumption, reduced access latency, and
improved resiliency) come at a price. Caches higher in the
hierarchy must field the misses of their descendents. If the
equilibrium hit rate of a leaf cache is 50%, this means that
half of all leaf references get resolved through a second level
cache rather than directly from the object’s source. If the
reference hits the higher level cache, so much the better, as
long as the second and third level caches do not become a
performance bottleneck. If the higher level caches become
overloaded, then they could actually increase access latency,
rather than reduce it.

Running on a dedicated SPARC 20, the Harvest cache

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000

C
um

m
ul

at
iv

e
D

is
tr

ib
ut

io
n

Time [msec]

Cached Flat, 2 levels and 3 levels

Flat
2 Levels
3 Levels

Figure 7: Effect of cache hierarchy on cache response time.

can respond to over 250 UDP hit or miss queries per second,
deliver 200 small objects per second, and deliver 4 Mbits
per second to clients. At today’s regional network speeds
of 1 Mbit/Second, the harvest cache can feed data to users
four times faster than the regional network can get the data
to the cache. Clearly, a Harvest cache is not a performance
bottleneck. As an alternative way to look at the problem, in
October 1995 the America Online network served 400,000
objects an hour during peak load. Depending on hit rate,
a half dozen Harvest caches can support the entire AOL
workload.

Figure 7 shows the response time distribution of faulting
an object through zero, one and two levels of hierarchical
caching. Figure 7 is read in two parts: access times from
1-20 ms correspond to hits at a first level cache. Access
times above 20 ms are due to hierarchical references that
wind thier way through multiple caches and to the remote
Web server. These measurements were gathered using five
concurrent clients, each referencing the same 2,000 objects
in a random order, against initially cold caches. The caches
communicated across an Ethernet LAN, but the references
were to distant objects. The result of this workload is that at
least one client faults the object through multiple caches, but
most of the clients see a first-level hit for that object.

Under this 80% hit workload, the average latency in-
creases a few milliseconds per cache level (pick any point
on the CDF axis and read horizontally across the graph until
you cross the 1-level, 2-level, and 3-level lines.). For a 0%
hit workload, each level adds 4-10 milliseconds of latency.
Of course, if the upper-level caches are saturated or if the
network connection to the upper-level cache is slow, these
latencies will increase.

While this particular experiment does not correspond to
any real workload, our point is that cache hierarchies do not
significantly reduce cache performance on cache misses.

4 Cache Consistency

The Harvest cache, patterned after the Internet’s Domain
Naming System, employs TTL-based cache consistency. Like
the Domain Naming system and the Alex File System, the
Harvest cache can return stale data. If the object’s MIME
header conveys an expiration time, Harvest respects it. If the
object’s MIME header conveys its last modification time,
Harvest sets the object’s TTL to one half the time elapsed
since the object was last modified. If the object carries neither

time stamp, the cache assigns a default TTL according to the
first regular expression that the URL matches. Unlike HTTP
which can specify expiration times, Gopher and FTP provide
no mechanism for owners to specify TTLs. Hence, when the
Harvest cache fetches a Gopher or FTP object, it assigns it a
default TTL based on regular expression. When the TTL ex-
pires, the cache marks the object as expired. For references
to HTTP objects, the cache can revalidate expired objects
using a “get-if-modifed” fetch. Get-if-modified fetches are
propagated correctly through the hierarchy.

We believe that Web caches should not implement hier-
archical invalidation schemes, but that sites exporting time-
critical data should simply set appropriate expiration times.
We say this because hierarchical invalidation, like AFS’s
call-back invalidations [14], requires state, and the Internet’s
basic unreliability and scale complicate stateful services. Be-
low, we present data from two additional studies that support
this position.

Object Lifetimes

In the absence of server-specified object expiration times,
how should we set the cache’s default TTL and how fre-
quently should we “get-if-modified” versus simply returning
the cached value? This question has several answers. Some
service providers are contractually obligated to keep their
cached data consistent: “We promise to get-if-modified if
the cached value is over 15 minutes old”. Others leave this
question to the user and the brower’s “reload” command. A
quick study of Web data reveals that Internet object lifetimes
vary widely and that no single mechanism will suffice.

To illustrate this, we periodically sampled the modifica-
tion times of 4,600 HTTP objects distributed across 2,000
Internet sites during a three month period. We found that the
mean lifetime of all objects was 44 days, HTML text objects
and images were 75 and 107 days respectively, and objects of
unknown types averaged 27 days. Over 28% of the objects
were updated at least every 10 days, and 1% of the objects
were dynamically updated. While WWW objects may be-
come less volatile over time, the lifetime variance suggests
that a single TTL applied to all objects will not be optimal.
Note also that the time between modifications to particular
objects is quite variable. This reinforces the need for picking
cache TTLs based on last modification times, but that do not
grow too large.

In the absence of object owner-provided TTLs, caches
could grow object TTLs from some default minimum to some
default maximum via binary exponential backoff. Each time
an object’s TTL expires, it could be revalidated with yet
another get-if-modified.

Hierarchical Invalidation

In large distributed environments such as the Internet, sys-
tems designers have typically been willing to live with some
degree of cache inconsistency to reduce server hot spots,
network traffic, and retrieval latency. In reference [20],
we evaluate hierarchical invalidation schemes for Internet
caching, based on traces of Internet Web traffic and based on
the topology of the current U.S. Internet backbone. In the
absence of explicit expiration times and last-modification
times, this study found that with a default cache TTL of 5
days, 20% of references are stale. Further, it found that the
network cost of hierarchical invalidation exceeded the sav-
ings of Web caching for default cache TTLs shorter than five
days.

Note that achieving a well-working hierarchical invalida-
tion scheme will not be easy. First, hierarchical invalidation
requires support from all data providers and caches. Sec-
ond, invalidation of widely shared objects will cause bursts
of synchronization traffic. Finally, hierarchical invalidation
cannot prevent stale references, and would require consider-
able complexity to deal with machine failures.

At present we do not believe hierarchical invalidation
can practically replace TTL based consistency in a wide-area
distributed environment. However, part of our reluctance to
recommend hierarchical invalidation stems from the current
informal nature of Internet information. While most data
available on the Internet today cause no problems even if
stale copies are retrieved, as the Internet evolves to support
more mission critical needs, it may make sense to try to
overcome the hurdles of implementing a hybrid hierarchical
invalidation mechanism for the applications that demand data
coherence.

5 Experience

5.1 Transparency

Of our goals for speed, efficiency, portability and trans-
parency, true transparency was the most difficult to achieve.
Web clients expect caches and firewall gateways to translate
FTP and Gopher documents into HTML and transfer them
to the cache via HTTP, rather than simply forwarding refer-
enced objects. This causes several problems. First, in HTTP
transfers, a MIME header specifying an object’s size should
appear before the object. However, most FTP and Gopher
servers cannot tell an object’s size without actually transfer-
ring the object. This raises the following problem: should
the cache read the entire object before it begins forwarding
data so that it can get the MIME header right, or should it
start forwarding data as soon as possible, possibly dropping
the size-specifying MIME header? If the cache reads the
entire object before forwarding it, then the cache may inject
latency in the retrieval or, worse yet, the client may time
out, terminate the transfer and lead the user to believe that
the URL is unavailable. We decided not to support the size
specification to avoid the timeout problem.

A related problem arises when an object exceeds the
configured maximum cacheable object size. On fetching an
object, once it exceeds the maximum object size, the cache
releases the object’s disk store but continues to forward the
object to the waiting clients. This feature has the fortunate
consequence of protecting the cache from Web applications
that send endless streams only terminated by explicit user
actions.

Web clients, when requesting a URL, transmit a MIME
header that details the viewer’s capabilities. These MIME
headers differ between Mosaic and Netscape as well as from
user to user. Variable MIME headers impact performance
and transparency. As it happens, the Mosaic MIME headers
range from a few hundred bytes to over a kilobyte and are fre-
quently fragmented into two or more IP packets. Netscape
MIME headers are much shorter and often fit in a single
IP packet. These seemingly inconsequential details have a
major impact that force us to trade transparency for perfor-
mance.

First, if a user references an object first with Netscape and
then re-references it with Mosaic, the MIME headers differ
and officially, the cacheshould treat these as separate objects.
Likewise, it is likely that two Mosaic users will, when naming
the same URL, generate different MIME headers. This also

means that even if the URL is a hit in a parent or sibling
cache, correctness dictates that the requested MIME headers
be compared. Essentially, correctness dictates that the cache
hit rate be zero because any difference in any optional field
of the MIME header (such as the user-agent) means that the
cached objects are different because a URL does not name
an object; rather, a URL plus its MIME header does. Hence,
for correctness, the cache must save the URL, the object, and
the MIME header. Testing complete MIME headers makes
the parent-sibling UDP ping protocol expensive and almost
wasteful. For these reasons, we do not compare MIME
headers.

Second, some HTTP servers do not completely imple-
ment the HTTP protocol and close their connection to the
client before reading the client’s entire MIME header. Their
underlying operating system issues a TCP-Reset control mes-
sage that leads the cache to believe that the request failed.
The longer the client’s MIME header, the higher the probabil-
ity that this occurs. This means that Mosiac MIME headers
cause this problem more frequently than Netscape MIME
headers. Perhaps for this reason, when it receives a TCP-
Reset, Mosaic transparently re-issues the request with a short,
Netscape-length MIME header. This leaves us with an un-
maskable transparency failure since the cache cannot prop-
agate TCP-Resets to its clients. Instead, the cache returns a
warning message that the requested object may be truncated,
due to a “non-conforming” HTTP server.

Third, current HTTP servers do not mark objects with a
TTL, which would assist cache consistency. With the ab-
sence of help from the HTTP servers, the cache applies a
set of rules to determine if the requested URL is likely a dy-
namically evaluated (and hence uncacheable) object. Some
news services replace their objects many times in a single
day, but their object’s URLs do not imply that the object
is not cacheable. When the user hits the client’s “reload”
button on Mosaic and Netscape, the client issues a request
for the URL and adds a “don’t-return-from-cache” MIME
header that forces the cache to (hierarchically) fault in a
fresh copy of an item. The use of the “reload” button is the
most intrusive aspect of the cache to users.

Fourth, both Mosaic and Netscape contain a small mis-
take in their proxy-Gopher implementations. For several
months, we periodically re-reported the bug to Netscape
Communications Corp., NCSA, and Spyglass, Inc., but none
of these organizations chose to fix the bug. Eventually we
modified the cache to avoid the client’s bugs, forcing the
cache to translate the Gopher and FTP protocols into prop-
erly formatted HTML.

Note that the Harvest cache’s encapsulating protocol (see
Section 2.2) supports some of the features that the proxy-
http protocol sacrifices in the name of transparency. In the
future, we may change cache-to-cache exchanges to use the
encapsulating protocol.

5.2 Deployment

As Harvest caches get placed in production networks, we
continue to learn subtle lessons. Our first such lesson was
the interaction of DNS and our negative cache. When users
reference distant objects, occasionally the cache’s DNS re-
solver times out, reports a lookup failure, and the cache adds
the IP address to its negative IP cache. However, a few sec-
onds later, when the user queries DNS directly, the server
returns a quick result. What happened, of course, is that
the nameserver resolves the name between the time that the
cache gives up and the time that the frustrated user queries

the name server directly. Our negative cache would continue
to report that the URL was unresolvable for the configured
negative caching interval. Needless to say, we quickly and
dramatically decreased the default negative cache interval.

At other times Harvest caches a DNS name that it man-
aged to resolve through an inconsistent, secondary name
server for some domain. When the frustrated user resolves
the name directly, he may get his reply from a different, con-
sistent secondary server. Again the user reports a bug that
Harvest declares that a name is bad when it is not.

Caches serving intense workloads overflowed the oper-
ating system’s open file table or exhausted the available TCP
port number space. To solve these problems, we stopped ac-
cepting connections to new clients once the we approach the
file descriptor or open file table limit. We also added watch-
dog timers to shut down clients or servers that refused to
close their connections. As people port the cache to various
flavors of UNIX, some had to struggle to get non-blocking
disk I/O correctly specified.

Deploying any Web cache–Harvest,Netscape, or CERN–
for a regional network or Internet Service Provider is tricky
business. As Web providers customize their pages for partic-
ular browsers, maintaining a high cache hit rate will become
harder and harder.

5.3 Open Systems vs. File Systems

The problems we faced in implementing the Harvest object
cache were solved a decade ago in the operating systems
community, in the realm of distributed file systems. So the
question naturally arises, “Why not just use a file system
and dump all of this Web silliness?” For example, Transarc
proposes AFS as a replacement for HTTP [19].

AFS clearly provides better caching, replication, man-
agement, and security properties than the current Web does.
Yet, it never reached the point of exponential growth that
characterizes parts of the Internet infrastructure, as has been
the case with TCP/IP, DNS, FTP, Gopher, WWW, and many
other protocols and services. Why would the Internet com-
munity prefer to rediscover and re-implement all of the tech-
nologies that the operating systems community long ago
solved?

Part of the answer is certainly that engineers like to rein-
vent the wheel, and that they are naturally lazy and build the
simplest possible system to satisfy their immediate goals.
But deeper than that, we believe the answer is that the Inter-
net protocols and services that become widespread have two
characterizing qualities: simplicity of installation/use, and
openness. As a complex, proprietary piece of software, AFS
fails both tests.

But we see a more basic, structural issue: We believe
that file systems are the wrong abstraction for ubiquitous
information systems. They bundle together a collection of
features (consistency, caching, etc.) in a way that is overkill
for some applications, and the only way to modify the feature
set is either to change the code in the operating system, or to
provide mechanisms that allow applications selective control
over the features that are offered (e.g., using ioctls and
kernel build-time options). The Internet community has cho-
sen a more loosely coupled way to select features: a la carte
construction from component technologies. Rather than us-
ing AFS for the global information service, Internet users
chose from a wealth of session protocols (Gopher, HTTP,
etc.), presentation-layer services (Kerberos, PGP, Lempel-
Ziv compression, etc.), and separate cache and replication
services. At present this has lead to some poor choices (e.g.,

running the Web without caching support), but economics
will push the Internet into a better technical configuration in
the not-too-distant future. Moreover, in a rapidly changing,
competitive multi-vendor environment it is more realistic to
combine features from component technologies than to wrap
a “complete” set in an operating system.

6 Related E�orts

There has been a great deal of research into caching. We
restrict our discussion here to wide-area network caching
efforts.

One of the earliest efforts to support caching in a wide-
area network environment was the Domain Naming Sys-
tem [17]. While not a general file or object cache, the DNS
supports cachingof name lookup results from server to server
and also from client to server (although the widespreadBIND
resolverclient library does not provide client caching), using
timeouts for cache consistency.

AFS provides a wide-area file system environment, sup-
porting whole file caching [14]. Unlike the Harvest cache,
AFS handles cache consistency using a server callback scheme
that exhibits scaling problems in an environment where ob-
jects can be globally popular. The Harvest cache implemen-
tation we currently make available uses timeouts for cache
consistency, but we also experimented with a hierarchical
invalidation scheme (see Section 4). Also, Harvest imple-
ments a more general caching interface, allowing objects to
be cached using a variety of access protocols (FTP, Gopher,
and HTTP), while AFS only caches using the single AFS
access protocol.

Gwertzman and Seltzer investigated a mechanism called
geographicalpush caching[12], in which the server chooses
to replicate documents as a function of observed traffic pat-
terns. That approach has the advantage that the choice of
what to cache and where to place copies can be made using
the server’s global knowledge of reference behavior. In con-
trast, Bestavros et al. [11] explored the idea of letting clients
make the choice about what to cache, based on application-
level knowledge such as user profiles and locally configured
descriptions of organizational boundaries. Their choice was
motivated by their finding that cache performance could be
improved by biasing the cache replacement policy in favor
of more heavily shared local documents. Bestavros also
explored a mechanism for distributing popular documents
based on server knowledge [3].

There have also been a number of simulation studies of
caching in large environments. Using trace-driven simula-
tions Alonso and Blaze showed that server load could be
reduced by 60-90% [1, 2]. Muntz and Honeyman showed
that a caching hierarchy does not help for typical UNIX
workloads [18]. A few years ago, we demonstrated that FTP
access patterns exhibit significant sharing and calculated that
as early as 1992, 30-50% of NSFNET traffic was caused by
repeated access to read-only FTP objects [10].

There have also beenseveral network object cacheimple-
mentations, including the CERN cache [16], Lagoon [6], and
the Netscape client cache. Netscape currently uses a 5 MB
default disk cache at each client, which can improve client
performance, but a single user might not have a high enough
hit rate to affect network traffic substantially. Both the CERN
cache and Lagoon effort improve client performance by al-
lowing alternate access points for heavily popular objects.
Compared to a client cache, this has the additional benefit of
distributing traffic, but the approach (forking server) lacks
required scalability. Harvest is unique among these systems

in its support for a caching hierarchy, and in its high perfor-
mance implementation. Its hierarchical approach distributes
and reduces traffic, and the non-blocking/non-forking archi-
tecture provides greater scalability. It can be used to increase
server performance, client performance, or both.

Cate’s Alex file system[8], completed before the explo-
sive growth of the Web, exports a cache of anonymous FTP
space via an NFS interface. For performance, Alex caches
IP addresses, keeps object meta-data in memory, and caches
FTP connections to remote servers to stream fetches to mul-
tiple files. Alex uses TTL-based consistency, caching files
for one tenth of the elapsed time between the file was fetched
and the file’s creation/modification date. The architecture
of the Harvest cache is similar to Alex in many ways: Har-
vest caches IP addresses, keeps meta-data in memory, and
implements a similar life-time based object consistency al-
gorithm. Harvest does not stream connections to Gopher
and Web servers, because these protocols do not yet sup-
port streaming access. In contrast to Alex, which exports
FTP files via the UDP-based NFS protocol, Harvest exports
Gopher, FTP, and Web objects via the proxy-http interface
implemented by Web browsers. Furthermore, the Harvest
cache supports hierarchical caching, implements a consis-
tency protocol tailored for Web objects, and serves as a very
fast httpd-accelerator.

7 Summary

Internet information systems have evolved so rapidly that
they postponed performance and scalability for the sake of
functionality and easy deployment. However, they cannot
continue to meet exponentially growing demand without new
infrastructure. Towards this end, we designed the Harvest
hierarchical object cache.

This paper presents measurements that show that the
Harvest cache achieves better than an order of magnitude
performance improvement over other proxy caches. It also
demonstrates that HTTP is not an inherently slow protocol,
but rather that many popular implementations have ignored
the sage advice to make the common case fast [15].

Hierarchical caching distributes load away from server
hot spots raised by globally popular information objects,
reduces access latency, and protects the network from erro-
neous clients. High performance is particularly important for
higher levels in the cache hierarchy, which may experience
heavy service request rates.

The Internet’s autonomy and scale present difficult chal-
lenges to the way we design and build system software.
Once software becomes accepted as de facto standards, both
its merits and its deficiencies may live forever. For this rea-
son, the real-world complexities of the Internet make one
face difficult design decisions. The maze of protocols, in-
dependent software implementations, and well-known bugs
that comprise the Internet’s upper layers, frequently force
tradeoffs between design cleanliness and operational trans-
parency. This paper discusses many of the tradeoffs forced
upon us.

Software and Measurement Data Availability

The Harvest cache runs under several operating systems, in-
cluding SunOS, Solaris, DEC OSF-1, HP/UX, SGI, Linux,
and IBM AIX. Binary and source distributions of the cache
are available from http://excalibur.usc.edu/. The test code
and the list of URLs employed in the performance evaluation
presented here are available from http://excalibur.usc.edu-

/experiments. The reader can get information about the
overall Harvest system from http://harvest.cs.colorado.edu/.

Acknowledgments

This work was supported in part by the Advanced Research
Projects Agency under contract number DABT63-93-C-0052.
Danzig was also supported in part by the Air Force Office
of Scientific Research under Award Number F49620-93-1-
0082, and by a grant from Hughes Aircraft Company under
NASA EOSDIS project subcontract number ECS-00009,and
by National Science Foundation Institutional Infrastructure
Grant Number CDA-921632. Schwartz was also supported
in part by the National Science Foundation under grant num-
bers NCR-9105372 and NCR-9204853, an equipment grant
from Sun Microsystems’ Collaborative Research Program,
and from the University of Colorado’s Office of the Vice
Chancellor for Academic Affairs. Chuck Neerdaels was
supported by HBP NIH grant 1-P20-MH/DA52194-01A1.

The information contained in this paper does not neces-
sarily reflect the position or the policy of the U.S. Govern-
ment or other sponsors of this research. No official endorse-
ment should be inferred.

We thank John Noll for writing the initial cache proto-
type. We thank Darren Hardy and Duane Wessels for all of
the work they have done on integrating the cache into the
overall Harvest system.

References

[1] Rafael Alonso and Matthew Blaze. Long-term caching
strategies for very large distributed file systems. Pro-
ceedings of the USENIX Summer Conference, pages
3–16, June 1991.

[2] Rafael Alonso and Matthew Blaze. Dynamic hierar-
chical caching for large-scale distributed file systems.
Proceedings of the Twelvth International Conference
on Distributed Computing Systems, June 1992.

[3] Azer Bestavros. Demand-Based Document Dissem-
ination for the World-Wide Web. Computer Science
Department, Boston University, February 1995. Avail-
able from ftp://cs-ftp.bu.edu/techreports/95-003-web-
server-dissemination.ps.Z.

[4] Nathaniel Borenstein and Ned Freed. RFC 1521:
MIME (Multipurpose Internet Mail Extensions) part
one: Mechanisms for specifying and describing the
format of Internet message bodies, September 1993.

[5] C. Mic Bowman, Peter B. Danzig, Darren R. Hardy,
Udi Manber, and Michael F. Schwartz. The Har-
vest information discovery and access system. Pro-
ceedings of the Second International World Wide Web
Conference, pages 763–771, October 1994. Avail-
able from ftp://ftp.cs.colorado.edu/pub/cs/techreports-
/schwartz/Harvest.Conf.ps.Z.

[6] Paul M. E. De Bra and Reiner D. J. Post. In-
formation Retrieval in the World-Wide Web: Mak-
ing client-based searching feasible. Available from
http://www.win.tue.nl/win/cs/is/reinpost/www94-
/www94.html.

[7] Hans-Werner Braun and Kimberly Claffy. Web traf-
fic characterization: an assessment of the impact of
caching documents from NCSA’s web server. In Sec-
ond International World Wide Web Conference, Octo-
ber 1994.

[8] Vincent Cate. Alex - a global filesystem. Proceedings
of the Usenix File Systems Workshop, pages 1–11, May
1992.

[9] Peter B. Danzig, Katia Obraczka, and Anant Kumar.
An analysis of wide-area name server traffic: A study
of the Domain Name System. ACM SIGCOMM 92
Conference, pages 281–292, August 1992.

[10] Peter B. Danzig, Michael F. Schwartz, and Richard S.
Hall. A case for caching file objects inside internet-
works. ACM SIGCOMM 93 Conference, pages 239–
248, September 1993.

[11] Bestavros et al. Application-level document caching
in the Internet. Workshop on Services in Distributed
and Networked Environments, Summer 1995. Avail-
able from ftp://cs-ftp.bu.edu/techreports/95-002-web-
client-caching.ps.Z, January 1995.

[12] James Gwertzman and Margo Seltzer. The case for ge-
ographical push-caching. HotOS Conference, 1994.
Available as ftp://das-ftp.harvard.edu/techreports/tr-
34-94.ps.gz.

[13] Darren R. Hardy, Michael F. Schwartz, and Duane Wes-
sels. Harvest User’s Manual, September, 1995. Version
1.3. Available below http://harvest.cs.colorado.edu/.

[14] John Howard, Michael Kazar, Sherri Menees, David
Nichols, M. Satyanarayanan, Robert Sidebotham, and
Michael West. Scale and performance in a distributed
file system. ACM Transactions on Computer Systems,
6(1):51–81, February 1988.

[15] Bulter Lampson. Hints for computer system design.
Operating Systems Review, 17(5):33–48, Oct 10-13,
1983.

[16] Ari Luotonen, Henrik Frystyk, and Tim Berners-
Lee. CERN HTTPD public domain full-
featured hypertext/proxy server with caching, 1994.
Available from http://info.cern.ch/hypertext/WWW-
/Daemon/Status.html.

[17] Paul Mockapetris. RFC 1035: Domain names - imple-
mentation and specification. Technical report, Univer-
sity of Southern California Information Sciences Insti-
tute, November 1987.

[18] D. Muntz and P. Honeyman. Multi-level caching in
distributed file systems - or - your cache ain’t nuthin’ but
trash. Proceedings of the USENIX Winter Conference,
pages 305–313, January 1992.

[19] Mirjana Spasojevic, Mic Bowman, and Alfred Spec-
tor. Information Sharing Over a Wide-Area File
System. Transarc Corporation, July 1994. Avail-
able from ftp://grand.central.org/darpa/arpa2/papers-
/usenix95.ps.

[20] Kurt Jeffery Worrell. Invalidation in Large Scale
Network Object Caches. Department of Com-
puter Science, University of Colorado, Boulder,
Colorado, December 1994. M.S. Thesis, avail-
able from ftp://ftp.cs.colorado.edu/pub/cs/techreports-
/schwartz/WorrellThesis.ps.Z.

Anawat Chankhunthod received his B.Eng in Electrical
Engineering from the Chiang Mai University, Thailand in
1991 and his M.S in Computer Engineering from the Uni-
versity of Southern California in 1994. He is currently a
Ph.D candidate in Computer Engineering at the University
of Southern California. Shortly after receiving his B.Eng,
he joined the faculty of the Department of Electical Engi-
neering, Chiang Mai University and currently is on leave for
extending his education. He is currently an research assistant
at the Networking and Distributed system laboratory at the
University of Southern California. His research focuses on
computer networking and distributed systems. He can be
contacted at chankhun@usc.edu.

Peter B. Danzig received his B.S. in Applied Physics
from the University of California Davis in 1982 and his
Ph.D in Computer Science from the University of California
Berkeley in 1989. He is currently an Assistant Professor at
the Univerity of Southern California. His research addresses
both building scalable Internet information systems and flow,
congestion and admission control algorithms for the Internet.
He has served on several ACM SIGCOMM and ACM SIG-
METRICS program committees and is an associate editor
of Internetworking: Research and Experience. He can be
contacted at danzig@usc.edu.

Charels J. Neerdaels received his BAEM in Aerospace
Engineering and Mechanics in 1989, from the University of
Minnesota, Minneapolis. After several years work in the
defense industry, he continued his education in Computer
Science at the University of Southern California. He has
recently left the University to become a Member of Technical
Staff, Proxy Development at Netscape communications, and
can be reached at chuckn@netscape.com. CA 94043

Michael Schwartz received his Ph.D in Computer Sci-
ence from the University of Washington in 1987, after which
time he joined the faculty of the Computer Science Depart-
ment at the University of Colorado - Boulder. Schwartz’
research focuses on international-scale networks and dis-
tributed systems. He has built and experimented with a
dozen information systems, and chairs the IRTF Research
Group on Resource Discovery, which built the the Harvest
system. Schwartz is on the editorial board for IEEE/ACM
Transactionson Networking, and was a guest editor of IEEE
Journalof SelectedAreasin Communication, for a 1995 Spe-
cial Issue on the Global Internet. In 1995 Schwartz joined
@Home (a Silicon Valley startup doing Internet over cable),
where he is currently leading the directory service effort.
Schwartz can be reached at schwartz@home.net.

